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Abstract

A method is summarized for the precise computation of
the veloecity of sound in a real gas and of its variations
with experimental conditions. Specifically, two problems
are discussed: (a) the inclusion of the effects of depar-
tures of the equation of state from the perfect gas law,
and (b) the computation of specific heats from spectro-
scopic data. The methiod is applied ton air and data for
the computation of the velocity in air, under pressures
between 720 and 820 mm. Hg. and temperatures between 0°
and 30° C, are presented. These results sre summarized in
the form of correction factors for the reduction to standard
conditions of velocities measured at varicus frequencies
and in this range of pressure and temperature.
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computation of the Velocity of Sound in Gases
by

Preston W, Smith, Jr.

I
IRTRODUCT ION

The recognized factors which can infiuence the phase velocitly
for propagation of sound in gases under various experimental con-
ditions are numerous to a point of annoyance. Howaver, when the
gas 1s uniform and unbounded and the temperature, pressure, and
frequency are not extreme, the situatlon is considerabiy simplified.

The classical expression for the phase velocity of an acous-
tic signal of small amplitude in an unbounded gas 1s the well-
known expression,l‘

c = (YP/p )t | (1)
where v i1s the ratlo of specific heats, Po is the equilibrium
pressure, and po is the equilibrium density of the gas. The
assumptions implicit in this equation are that the gas 1is "ideal"
(1.e., the equation of state 1s the perfect gas law) and that
the sound disturbance is an isentropic (reversible adiabatic)
process. It 1s usually assumed that ¥ is independent of the
experimental conditionsg 1t follows that the velocity should
vary only as the sauare-root of the absolute temperature.

In this memorandum,; we shall consider the problem cf thre
theoretical calculation of the velocity of sound with a pre-
cision which invalidates some of the preceding assumptions.
First, a method will be outlined for the incorporation of the
effe “s of the "imperfection" of the gas (i.e., the departure
of its experimentally determined equation cf state from the
perfect gas law). Secondly, the means for the computation of
the specific nheat from spectroscopic data will be presented.

No consideration will be given tc the effects upon the velocity

*All numbered references appear at the end of the repcrt.
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of the radiation and conduction of heat or the viscosity, since
these pnenomena are of imoortance only a2t the extremes of the fre-
quency scale. A review of these effects can be found in a recent
paper by Markham, et alo2
will be presented.

The results of computations for air

From the results of theoretical calculations of this nature,
measurements of the velocity of sound made under diffesrent =x-
perimental conditions can be corrected for these known effects
and accurately compared at a common reference condition.

II
THEORY

Ths distribution of pressure in a sound field in an unbounded
medium can be shown to be the solution of the wave equation,3

V3 + @2/v%)p = 0, (2)

where, in lieu of a specified equation of state fvr the mediunm,
the symbol V2 stands for the differential quotient,

v2 = (3p/2p). (3)

In these equations, p is the instantaneous variational pressure,
p 1s thes instantaneous density of the medium, and @ is the
angular frequency.* For generality, V must be considered to be
a complex numbter (the complex veloeity of sound). However, the
situations to be considered in this memorsndum 2re limiting or
asymptotic cases in which V 1= real; in that case, it is readily
recognized as the phase velocity or, more commonly, the velocity
of sound.

- e @ P ® w -

*The assumptions implicit in the mathematical derivation are:

a. the pressure is a scalar point function of the space
cocordinates, :

b. tiere are no sources or sinks of mass in the region,

¢. the external, or "body," forces on the medium are
constant,

d. the pressure and density disturbances are very smali, and

e. the time derivative of V2 is zexo.

e
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Velocity of Sound in Imperfect Gases

The differential quotient for the square cof the cumplex

velocity [Bg- (3)) can be evaluated in terms of fundamental

tiiermodynamic variables from the equation cf state for the gas.
If the perfect gas law is assumed, one reveric to Eq. (1).

The methcd we will =se for evaluating V was appsrently
first developed by van Itierbeek and Keesom® for determination
of the real gas equation of state from sound velocity measure-
mentsy subsequently, both Bichardss and Hardyé employed similar
expressions in the consideraticn of the invsrse prehlem -~ that

with which we are concerned -- of prediction of the variations
of sound velocity from equation-of-state data.

The treatment proceeds from the fundamental definition,

(Bq. (3)1], and by means of standard thermodynamic relationships
valid for pure substancos* arrives at the expression

2 _ (2 _MT_3p\2
V2 = ($R)y +pacv(§-§)p (4)

where P 1s the total pressure,
T 1s the absolute temperature,

Cv is the specific heat at constant volume, and
M is the mclecular weight of the mediun.

However, further manipulation is nscessary since the spe-
cific heat of a real gas is not constant; its derivative,
known from thermodyriamics, must be integrated to obtain the

value of Cv at the temperature and pressure of interest. The
equation then reduces to

r
v2=B.If l_1+.58[£__...

¥ S . 4

¢ The term “pure substance"™ 1s used here in its thermodynamic
sense. Keenan in Thermodynamics (Wiley, 1941) defines it as:
"A system which is homogeneous in composi%icn and homogeneous
and invariable in chemical aggregation..."™ (p. 18). The re~

striction is necessary in crder to eliminate the complexivies
of phase changes and chemical reactions.

) (5)

et = ol
.
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where R 1s the universal gas constant,
M is the nmolecular weight of t' gas,
Cvo/R 1s the ratio of the spec..ic heat at constant
volume to the universal gas constant in the 11mit as
the pressure approaches zero, and
f, g, and & are dimensionless functions of the equi-
1ibrium values of P and T.* **

The defining equations for f, g, and & (from which they
can be evaluated if an equestion of state relating P, P, and
T is known) ares

1 P2
g = —2? (3-1:)p (6)

C 2
A= v':vo=_§ (2_1523% .

The quantities f and g differ only slightly from unity, and A
from zero, by an amount determined by the imperfection of the
gas; for a perfect gas [Eg. (5)] reduces to [Eq. (1)), 1i.e.,
V2 = (PP /P).

The significance of the individual tactors of Eq. (95) can
be shown to be as followss

*In his paper 6 Hardy (ref. 6, above) used a function, h, re=-
lated to our & by the equatlonf (Cv/R) = h(Cyo/R) = (Cvo/R) + A,
The difference lies primarily in the fact that. whereas A can
be evaluated from the equatioi of state alone, 'h involves also
the value or Cyo. However, Cyo varics with temperature inde-
pendently of A; theretore, the present notation 1s simpler and
preferable,

#*The factors £, g, &, and Cyy/R in this equation are all dimen=-
sionless; any con~‘stent seg of units can be used in the compu-
tations ieadlng tc thelr evaluation. The units of the resultant
figure for the velocity of sound depend wholly oa the factor,
RT/M. If it 1s desired that the velocity have the units
(cm/sec), it is appropriate to express T in degrees Kelvin
M in grams per mole, and R in ergs per mole - degree.

.
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fa) (RTf’M) is the real gas 1iscothermal bulk modulus of
elasticity: -v(3P/dv)., where v is the specific volume.

(b) (g/f) is the diiference of the spevific heats
divided by the gas constant: (Cp - Cy)/R, where C, is the
specific heat at constant pressure.

(c) & 1s the increment in the ratio, C /R, from zero
concentration of the gas to the experimental concentration.
Therefore, the quantity, (C, /R) + &, 1s the actual value of
Cy/B as defined by the expression: (3U/2T) /R, where U is the
internal energy of the medium,

(@) The whole factor in sguare trackets in Eq. (5) 1is
therefore the real vy, 1.e., the ratio of the specific heats
eveluated at the particular temperature and concentration for
which £, g, C, /R, and & are computed.

0f course, any equation of state which is an accurate
analytic representation of the P, p, T interdependence can
be used to compute these functions, f, g, and A; the Beattie-
Bridgman equation7 is one of the best available for this pur-
pose for substances in veporous phase. That equation expresses
P as a power series in p, the coefficients being functions of
Ty it involves five constants determined for each gas by a
process of fitting the various derivatives of the pressure to
a best match with data measured by various experimenters. n
its general form, the equation can be written

RdB
B ' . . BDy,2 ! - YA
P= (RT)p + (RTB - A T2)p + (4,a - RTBb = ) p
+ (=) ot
T

where, in the units usually employed,

P 1s the absolute pressure in atmospheres,

B i8 the universal gas constant (atmosphere liter/mole
degree).

- e & o e e
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T is the absolute temperature (degrees Kelvin),

p is the molar density (moles/liter), and _
A_ 1s a constant with units of (aimosphere liter2/mole‘),
B,, », b, are constants with units cf (liter/mole), and

d is a constant with units of (degree3 liter/mole).
This equaticn is sometimes conveniently abbreviatzd in the
«irial form
P=ap+pp? + yp> + 5pt (8)

where the four coefficlents (a, B, Y, 5) are functions of
temperature and independent of density.

Expressions for the functions needed in Bq. {5) for the
A
velocity .are readily evaluated from these equations as power
eeries in p. In the general case,

2B 3y ,2 8 3
t=14+8Fp 43X 2,48,

b}

g?

]
(W)
+

”~~
=]
(o]
+
o’
©
»
~~
U
L]
(o)
o
+
wl
o
e’
©

[ B B b
A -%pt1+—§p--§-p2]o

dhe following approxima*e formulas, retaining only the
first non-"ideal" terms, cen be verified from the expressions
given above,

P A

P = /% £1+(~BO+R‘+-§§) RLT-] (8a)
f=1-2(-B, +z3 + -;13—);:
2y , 64
8/f=1+(RT+T3)p (9a)
A = é% [
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In some check calculztions for oxygen at room temperature and
atmospheric pressure, the results of the approximate formulas
differed but sliighntly from the resulits of the more accurate
expressions. The errors were: 1less than 41 part per million
in p, 44 parts per thousand in (1-f), -1 part per thousand in
{g-1), and -1 part per thousand in a.

2. Evaluation of the Specific Eeat

In order to compute the velocity of sound from Eq. (5)
it is also necessary to obtain an accurate vaiue for the
specific heat at infinite dilution, Cvoe It has frequently
been pointed out that theoretical coaputations by the meth-
ods of statistical thermodynamics, with data obtained by
spectroscopic analysis of molecular spectra, are more accurate

than direct measurements. However, one must first consider
the possible differences between the specific heat effective
at a given sound frequency and that which wculd obtzin in a
quasi-static procass.

Varjation with Frequency
The definition of the specific heat can be written as
c, = (30/3T) (10)

where U is the internal energy of the medium, T is the abso-
lute temperature, and the subscript v signifies a constan®
volume process. This process must be envisioned as a periodic
variation at the frequency of the sound wave. Now the internal
energy consicsts of both translational energy and energy associ-

states of the molecules. In an equilibrium condition a cer-
tain small fraction of the molecules exists in each excited
state, the propgrtions‘being dependent on temperature. The
periodic variatioﬁal temperature resulting {rom a sound wave
will, therefore, cause a perlodic variation of the proportions
of the excited molecuies; L.e., a periodic variation in tne
internal eriergy associated with the excited states. This

—— gy
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energy 1s in addition to the translatioral energy and 1is
therefore seen to modify the effective specific heat. How-
ever, the adjustment in the proportions of molecules in the
various statec ic nct inctantaneous; it can be shown that
there is a "time constant" associated with the response
mechanism which introduces a phase difference between the
temperature variations and the resultant energy variation.
Therefore the effective specific heat, C,, and the velocity,
V, will each be complex. Tn two cgsee, Cv and V will te
real: first, when the sound frequency 1s very low and the

gas can be considered to be moving through equiliprium states
only; secondly, when the sound frequency is so very high

that there is no time for an adjustment in the proportions

of molecules in the various states. Between these two iimit-
ing cases, the effective specific heat will have decreased by
an amount equal to the contribution of the energy in the
excited states to the quasi-static sgecific heat: the velocity
will have increased corresprondingly.

In the general case it is found that the transition for
all the states in any one "degree of freedom" occurs at a
single characteristic frequency, although these frequencies
may be (and usually are) different for different degrees of
freedom. The picture that develops is the following. The
qQuasi-static specific heat (that effective at zero frequency)
inciudes terms attributable to each of the translational,
vibrational, rotational, and electronic degrees of freedom
of the molecules. As the frequency increases, these terms
successively drop out from the effective specific heat. Thus

the velocity should increase in a sequence of steps. A careful

analysis shows that the velocity makes a smooth transition

between these steps, but at frequencies far from the transition

region the value of the velocity 1is essentially that of the
"step." (See Pig. (1).) We shall be concerned here with the

computation of the values of these steps. Therefore we wish to

-
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evaluate the contribution of each of the degrees of ireedom
to the specific heat. More specifically, only the limiting
values, as the pressure approaches zero, must be known (see
Eq. (5))3 thorefore, the gas can be considered an ideal gas

velociTty‘ -:/—‘___j

frequency —

Fig. 1. Varlation of Velocity with Frequency.

in this section. The determination of the transition frequen-
cles for the varjous degrees of freecom is an entirely distinct
problem which is not considered in this memorandum. It is, at
present, approached most readily by the experimental measure--

ment of the dependence of the velocity and attenuation of
sound upor frequency.

Computation from Spectroscopic Data

There are a number of papers and books which discuss, in
varying degrees of completeness and complexity, the computation
of specific heats of gases from spectroscopic datas however, it
is appropriate to summarize here the basic¢ theory and the meth-
ods used in this memorandum. Since this report is piiimariiy
concerned with the gaseous mixture, air, attention will be
centered on ius component gases which are mostly diatomic. The
many complications of detail which obtain for polyatomic gases
and at extremes of temperature are theredby avoidede9

The fundamental theoretical expression for the specific

heat at constant volume of a pure gas is10

————

———— — —— . g e
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C,/R = 772 32 ¢n £(7)/3(1/T)3, 4 (11)

where f£(T) is the partition function. The partition function

for a gas depends on the temperature and the znergy levels of

the varivus states of the molecules., Its analytic expression
9

is

N “E, /T '
d pi € 9 e \12)

£{1) = a13/2
1

where 4 is a constant independent of temperature, p
relative statistical weight of the g state, and E;, 1s the
energy (in units of degrees)®* cf the 1*B state. The statis-
tical weight 1s the number of distinct configurations of the
molecule which have the same energy, Ei, and therefore need
not be distinguished in the sum for the partition function.
It is readily verified from Eqs. (11) and {(12) that neither
the constant multiplier A nor a change in the datum for
energy (the same change for all states) will affect the value
of the specific heat.

1 is the

If the equation (12) is substituted into Eq. (11), the
results can be written:

C,/R = (cEFans/my + (cIntym), (13)
where cirans,p - 172 32 (132 (1/m2 = 372,
cint/p = 172 a2 £10%/5(1/1)2,
eint _

-E, /T
E Py € R

-~ - e - .

*The subscript "o"
has been omitted from Cv throughout this section.

s#The energy, in degrees, of a particulsr state can be obtained
from the corresponding wave number (in ca-1l) by multiplication

by the constant, hc/k where h is Planck's constant, ¢ 1s the

speed of light, and k is Boltzmann’s constant. The two units

are entirely equivaient.

indicating evaluation at zero concentration,
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The first term, ecual to 3/2, 1is the contribution of the trans-
iational energy ©+ the specific heat. The second term measures
the contribution of the "internal" degrees of freedom or, in the
terminology used earlier, 6 of the excited states of the molecule. .
The evaluation of this term is the majcr concern of this section.
It 1s seen that the internal partition function riP% 15 formally

determined by the energy levels, Ei’ and their corresponding welghts,

Py These energy levels (in units of the wave number, cm ) can
be directly measured svectrwsscsoplcally from the absorption and
smission spectra of the gas. It 1s essential to the systematic
computation of the specific heat, however, that une employ the
theoretical forms for the differences betwsen successive energy
lcvels as datermined by quantum mechanics with vaiues of the
necessary constants determined by a best match with the experi-
mental spectroscopic data.

In the usual convention, the tctal energy of a molezule in a
given state 1s expanded in the form

= B (e) + E (e,v) + E (e,v,3) (14)

where Ee(e) is the energy level of the et electronic state of a

molecule, in the hypothetical case where there 1s no vibration or
rotation, E (e,v) is the addit%gnal energy which the molecuig
would heve 1f it were in the v vibratiecnal level of the
electronic state, without rotation, and E (e,v,3)) is the energy
possessed by a molecule in the jth rotat1cna; level in excess of
the total energy without rotation. Furthermore, the statistical
waeight, Pys can be factored into the prouduct of a weight for the
rotational level, pr(J)9 and a weight for the electronic state,

pc(e)°

The internal partition function can now be written

-E, (o)
int 2 p (eje” _"rf'

Iy
(@]

v

(15)

_E, (e,v) E_(2,7,3)
A

—_——
-— e ——
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In many cases, in gases, the couplings between the rotational,
vibrational, and electronic states are sufficiently small that
their effects on the partition function can be neglected. Mathe-
matically, this statement means that if the vaiues of the sums

Z, and z—' are relatively independent of ihe other quantum
J=0
numbers * their dependence on those numbers can be neglected.

This is particularly true when the valus of Ev (or E, ) increases
graatlg ith the %uantum number so that the multiplicative factor,

€ (or ¢ ° ) decreases sharply.

When couplings between degrees of freedom are negligible,
thelr individual contritutions to the specific heat can be shown
(from Eqs. (13) and (15)] to be independent and additive. Thus
we can write

int _ el vid rot P
¢, /R = (O /R) + (¢, VMP/R) + (¢ 7% R) |, (18)

when the individual terms are to be evaluated bv means of Eq. (11)
from the partition functions for the individusgl degrees of freedom:

E,(e)-E,(0)
Pe(0) + Z P(e) ¢ T

eol -
e=1
Ev(v)-Ev(O)
fv1b = 1 + e T (17)
v=1
- E.())
gTot - 213 p.(3) ¢ T o

*The identifying index for the elesctronic state is not prop-
eriy called a quantum number; that term is belng misused here
in order to simplify the discussion. A further complication
of nomenclature arises in the case of polyatomic molecules;
the sum over v must then be replaced by a double sum since twc
numbers are necessary to identify a single vibrational statae:

a modal index and the quantum number identifying the level
within the mode.
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¥ethods of computation:

There are twe particularly useful methcds for evaluating the
contributions to the specific heat from these series. The value
of (CvVib/R} can be reduced tc the closed formit

2

Vib o - 2
C, " /R = x7/sinh™x

(18)

where

x = [E (1)-E_(0)3/2T .

This expression is derived under the fairly accurate assumption
tnat tue successive vibrational energy levels are evenly spaced
(the '"harmonic vibrator" assumption). However, the expression
is also a valid approximation, without the harmonic assumption,
if¥ the temperature is low cnough that only the lowest two vib-

rational levels are significantly populated (i.e., if £ 4% g

negligible). Therefore, Eq. (18) is very accurate at room tem-

perature but is somewhat in error at high temperatures.*

The most accurate method for evaluating any of the ccntri-
butions to (Cv/R) is computation directly from the series (Egs.
(17)) by means of Eq. (11). The labor is readily adaptea to
machine calculation. It can be verified that, if the partition

function has the form
T
f = pis 5

the contributicn tc the specific heat is

2
r Y - (f
c /R '“'_;E_L-"l" . (19)

where
~E,/T
£ =) py(By/Te 1

*This squation is also valid for the contributions of each
of the vibrational modes of a p:iyatomic molecule,6 if the
wodes can be considered "harmonic vibrators."

12
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This method of caicuiation must be used to evaluate the contri-
bution of the rotational degrees of freedom and can be used for
each of the internal degrees of freedom.

Formulas for the energy levels and statistical weights

There remains only the problem of determining the values of
the energy levels and the statistical weights for the various
degrees of freedom.  As discussed earlier, we shall use the theo-
retical formuias determined by gquantum mechanics,

The electronic contribution to the specific heat is vanishing
small, in the gases of 1interest, at all reasonabdle tempqiatures
because of the large values of the differences in energy=levels,
(Ee(e)»Ee(O))o [See Eq. (17).] 1In oxygen, in which the e{fect
is larger than in most gases, the first electronic state, A,
above the ground state, 32:, contributes less than 1 part in

164 for temperatures less than 200°K, 13

The spacing of the energzy levels of the vibrational degree
of freedom can be written approximately as
- 2

E,(v) - E (0) = (w, = X w )V = (xw ) v" (20)
where w_ 1s a wave number (reduced to degrees), and x_ ‘L a small,
positive constant included to compensate for the anharmonicity of
the seccessive energy levels,14 The values of Wo and X, are
tabulated in references on molecular spectra.

Tne rotational energy levels, for a nonrigid molecule in the

VEQ vibrational level, are given by the equationls

- 2 2
Ep(v,3) =B, J(§41) + D, 1°(§*1)° (21)
where
= R 1
= % & P
D, = D, B(v 5) -
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Here, tne smail factor D corrects for the effect of the non-
riaidity of the nolecule In rotation, this effect is sometimes
called "“centrirugal stretching."®™ The small factors a and A
correct for the coupling between the vibrational motion and the
rotation. Were this formula to be used in caiculaticn, the
nartition functilon for the vibration-rotation levels ccould not
be separated into products as in Eq. (19) nor couid the contri-

butions of vibrat:ion and rotation to the specific heat he genarsted
as in Eq. (16). Eowever, since the coupnling 1is small, its effect

nn the specific heat is quite negligible at all but extremely
high temperatures. It is therefore sufficient tc use Eq. (21)
with v = 0. The quantities usually tabulated arc the constants
By = B, -(a/2) and a. The X;rious constants are related to
one another by the equations

D

e = Be /“’e

"

8/Dy = (w /24 B_Y(a/B)2 + 5 (a/B) - 8 x, - (22)

By these equations, all constants can be determired from the
tabulated values and the csnergy levels computed.

It 1s still necessary to determine the statistical welghts,

p.(J), for the rotational levels. For the gases of major interest i

in this report, these weights can be writtenl6
pp(§) = gj(2j LA 3 T (23)

where the value of gj is differert for odd values ot i frcz that
for even Jfs. The ratio (gj Odd/g1 pven) is a constant for the

gas. All the equations necessary for the ccmputation of the rota-
tional contribution *o the specific heat have now been summarized.* **

*Sur1ct;y speaking Eqs. (21) and (23) apply only to singlet elec

tronic states such as the_ground state of No( 1 Y. In the ground

state of 02, the triplet 3) the energy levels and statistical

waights vary slightly between the three states. Fortunately, this
distinction 1s not significant except at very low temperatures; at
room temperatures and higher, the ground states of J- can be con-

sidered to be a single degenerate state of weight, 3

**It is frequently assumed that, at room temperature, the rotational

—— -




TE29 ~16=

Specaific Heaot of Mirxtures of Pure Gases

The preceding comments have been concerned with tne cal-
culation from spectroscopic data of the specific heat of a pure
gas at zero concentration, C,_ /R. Since a gas at zero concen-
traticn can be considered to be an ideal gas, the specific heat
of a mixture can bz computed by the usual formula,

(Cvc/R)tot ='§z:xi (cvc/R)i ’ (24)

where Xy is the mole fraction (part by volume) of the 1th

component=17

states of the molecule are so fully excited that the rotational
degrees of freedom are behaving entirely classically and that

the contribution of each to the specific heat; Cy,/R. is there-

fore equal to 1/2. This 1is strictly true only for %he theoretical
case of a rigid rotator. The calculations performed for this
raport indicatae that the %ffect of centrifugal stretching in-
creases the value of C,TO'/R for oxygen by twc parts per thousand
st room temperature. he effect increases with increasing tempera-
ture.
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I1I
CCMPUTATIONS AND RESULTS FOR AIR

1. Computaticns for Imperfections of Air

The equation for the square of the velocity of sound in
an imperfect gas was derg@® in a previcus section. [See Eq. (5),
P. 4.) The effect of th. imperfection of the gas is contained
in three tuncticns: [, g, and & which must be evaluated from the
equation of stute. Expressions for the three functions have been
derived [£q. (9), p. 6] in terms of the temperature, the density,
and the five constants A ; a, B, b, and d which appear in th2
Beattie-Bridgman equa*ion of state.

The process of commutation of these functions requires some
comments. First it is to be noted that the independent variables
in Eq. (9), as in the equation of state [Eq. (7)1, are the molar
density and the absclute temperaturs. Since the measurable quan-
tities are pressure and temperature, it is necessary first to
compute the molar density, p, [by a process of successive approxi-
mation, using Eq. (7)) for seis:ied values of P and T. The unit

of pressure is the normal atmosphere so that conversion is necessary

when the measurement is made in millimeters of mercury. Firally
the valuves of the universal gas constant; R, and the ice point,
TO(OK)used by Beattie and Bridgman in the computation of the
constants A _; a, B, b, and d are R = 0.C8206 atmosphere liter/
mole degree and To = 273,13 degrees Kelvin, respectively; these
figures must, of course, b= employed in all further calculatiors
with these five constants, namely, in the determination of the
values of f g, and 4. However, in Eq. (5) for the square of

the velocity of sound, the absolute temperature appears explicitly;
here the best contemporary value for the ice point should be used.
The valve T = 273.16 degrees Kelvin has been used in this report.
The values of the desired functions, f, g, and Ao, ard the ratio
g/f, can now be calculated from Eq. (9) for any particular gas or

vapor for which the five constants, Ao9 a, R b, d, have been

(o Xi
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determined. Mixtures &f tlre
method developed by Beattle.

gases can also be Treated oy a

Table I present{s the result of such calculations of the
functicns £, g/f, and A, fer air in the region: 0 to 30°¢,
720 to 820 mm. Hg: the values2o used for the constants of the
Beattie-Bridgman equation were

A, = 1.3012 B, = 0.04611 d = 4.34 % 16*

a < 0001931 b = "0.01101

The results contained in Table I, with the knowledge of
the specific heat, Cvo/R9 are sufficient to compute the ratio
of velocities of sound at different conditions of temperature
and pressure. However, in order to compute an absolute value
for sound velocity frem these theoretical considerations, it
is necessary as well [see Eq. (5)] to know the value of the
molecular weight, M. M is not determinable from the ecuation
of state alone;* indeed, it nevsr appears therein when the volume
unit is molar (e. go,liter/mole). Tt can, however, be detzrmined
simply from molar density, p (mole/liter), and the density proper,
p' (grams/liter), if both are known at the same experimental
conditions, for, by definition, p' =p M. PFurthermore, the value
of the molar density is readily computed from the equatién of

state [Eq. (7)]. Therefore the problem reduces to determining
the density in grams/liter.

- e e e et -

*I can find no satisfactory answer in the literature to the
problem of how, from experimental data_in which the unit of
volume was presumagly in cgs units (cm39 liter, or specific
volume units of cmd/gm, liter/gm, or equivalents), the con-
stants for Eq. (7) could have been determined in molar urits
without simultanenusly determining the value either of the
molecular weignht, M, or of the individual gas constant which is
the ratio, R/M. Indeed, in their first paper, J. Am. Chem. Soc.
49, 1665 {1927), Beattle and Bridgman present results for

ethyl ether and carbon dioxide which give both the values of
the five constonts arnd the value of the ratic, R/M; none cof

the other papers do so.
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Unfortunately, nc single value for the density of air can
be stated for the simple reason that the word "air" comprenends
a whole class of vaporous mixtures cf seneibly different ccmposi-
tions. One can even eliminate the well-known variaticns in the
proportions of water vapor and carbon dioxide and in the relative
proportions of 02 and N2 at different altitudes; there remains
a fluctuation of density,6 of approximately ¥0.0004 gram/liter,
more or less dependent on the barometric pressure at the time
the sample was obtained for measurement.21 This variaticn is
ascrired to changes 1n the relative proportions of oxygen and
nitrogen brought about by mass movements of gas within the at-
mosphere — an atmospheric "stirring"” in times of chanrngine
weather conditions. (This amount of variation ir density causes
a corresponding variation in the velocity of sourd of about
10.05 m/s.) Perhaps as satisfactory an answer as possible is
that the density of dry air with 0.03 per cent CO,, at sea level,
should average (over months) about 1.2930 X 10"3 grams/cm’ under
standard conditions of temperature and pressure°22’ 23 Assuming
this value tc be exact, the molecular weight of air, computed
by the method described above, ie¢ M = 28.0427 grams.

It must be mentioned, however, that these slight variations
in composition of "air" and in the molecular weight of the mix-
ture should neot significantly affect the values of the funotions

£y &/fy, and A used to correct measurements to standard conditions
of temperature and pressure.

2. Computations for Specific Heat of Air

A summary was given in the last chapter of the methods
and formulas used to compute the specific heats cof nure gases

and mixtures. We shall present here the vaiues of the experimental

constants and the results of the computation,

For the purposes of this secticn, z2ir 1s considered to be
a mixture of four gases mixed in the following propartions by
volume:

.
o e ——————n (=
.
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N,, 78.09%; 0,, 20.95%; A, 0.93%; CO,, C.03%.

Althousgh sore ~ariation in the values of the gropeortlicns cf

these gasee apnears in the literature, these figures are among
24

the most recent.<

Two constants are necessary to evaluate the exponents,
E/T, from the spectroscopic data given 1in (em)t units; the
values used are:
absolute temperatiure of the ice roint:
T, = °73.16°K;

energy level conversion factor (cm * to deg):

:3§ = 1.438337 degecm.

The cdata used for the individual gases follow:

_gggp is taken as a monatomic gas with energy of translation
ornly: / = 1.5000.

Ca‘b 1 dioxlde is taken as a linear polyatomic molecule with
full‘ excited rotational states and only slightly excited higher
vibrational levels. Precisely, account is taken of the energy
of the first vibrational levels above the ground state in esch
of four modes for which the energy levels are taken as:

Ev(@,v)-Ev(Ogn = 9.54, 9.4, 18.9, 32.6 degrees,
respectively. Equation (17) is then used to evaluate the ccn-
tribution of each mode to the specific heat.gs The resu.t need
not be too accurate eince the mole fraction of CO2 in air is
so small.

Oxygen is treated as a diatomic molecule in a degenerate
electronic state (321). The contribution of the next highest
electronizs state (1A) to the specific heat 1s neglected. The
small coupling between vibrational and rotational states is
ignored and the vibrational ccouponent of the specifig heat was
computed at 5-degree intervals rom O ° to 30 %6 by the use of
Eq. (18). These data were checked by direct computation from
the series expansion for the partition function at tenperatures

P Y |
.
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of 0°C and 20°C; no significant difference was detected. The
rotational svecific heat, Cert/Rq wa3 computed at 0°C9 IOOC. ‘
and 20YC from the avprcpriate series by Glauque’s method [Eq. (19)].

The values of tZe spectroscopic constants used for these com-
2

putations are: _,
vibrational contribution: (in 3>J eiectronic state)
- -1 T c m=1
w, 195€4.91 cm = W X, 11.645 cm
rotational contribution: (in 2) electronic state)
= a _ =i =
B, "B, -5~ 1.438 cm D (2§+1) J odd
@ = 0.016 o™t =0 , J even

Computations for Nitrogen were mace 1in a manner similiar
to that for oxygen. The vibrational specific heat, CVV1b/R9
was computed at intervals of 5°¢ from 0% to 30°C, using Eq. (18).
The rotational specific heat, Cert/R9 was computed at 0°C and
20°c from the series expansion for the partition function by

Glauque's method. The vaiues of the parameters used 1n these
compntations are:27

o grew

vibrational contribution: (in 1zz’electronic state)
w, = 2359.60 em~ 1 ' w X, = 14.445 em”1
rotational contribution: (in 12: electronlic state)
" = ‘3 = =1, =
By = B, = g = 1.992 cm pp = 2(24+1), § odd
-1

a = 0.018 cm

(23+1);, J even

In Table II, the computed values ¢f specific heats are ‘
presented for each gas and for the mixture, air. The specific
heats for air are also given, omitting the vibrational con-
tributions of varioue combinations of the component gases;
these would be the effective specific heats at various high
frequenciese28 The few values for specific heats given by
Hardy29 show no significant differance from these results.
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3. Computed Velocities for Air

The results of the computations of the previous two sections
can now be combined and theoretiral values computed [by Eq. (5),
p. 4))for the velocity of sount i1n air and its variations with
temperature, pressure and frequency. o

P I S Sy -y

The velocity of sound In air, at the reference conditions
generally accepted as standard, is thereby computed to be
331.45 m/s. These reference conditions are: temperature, OOC;
pressure, 760 mm Hgs proportion uof C02 by volume, 0003f§ humidity,
zerc; frequency, sufficiently low that the specific heat should
assume its quasi-static value.

The computed variations of the velocity of sound with temper-
ature, pressure, and freaquency are nresented in the accompanying
figures (Fig. 2) in the Torm of the fractional correction which
should be applied to experimental measurements to reduce them to
reference conditions. The correction factor given is the zmount
by which the ratis cf the velocity at reference conditions to
the velocity at stated conditicns exceeds unity. The curves are
lines of constant correction factor (and therefore of constant
velocity)s they are plotted as functions of temperature and
prassure. Four charts are given representing different fre-
quercy regions. The four charts in Fig. (2) represent data com-
puted with effective specific heats for air which omit various
contributions from the internai degrees of freedom of the com-
pcnient gases. Thus in Fig. (2a) ("Low Frequencies"). no con-
tribution is omitted; in Fig. (2b) ("Intermediate Frequencies I"),
the contribution of the vibrational degrees of freedom of O2 is
omitted; in Fig. (2c) ("TIntermediate Frequencies II"), the con-
tributions of the vibrational degrees of freedom of O2 and N,
are omitted; in Fig. (2d) ("High Frequencies') all vibration
contributions are omitted and the effective specitic heat in-
cludes only translational and rotaticnal terns.
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The frequency regions in which the charts are valid are
those far from *the transition frequencies where the velocity is
changing most rapidly.* [See Fig. (1), p. 2.] Unrortunately

o

the transition {regucnecies are not definitely determined for all
gases. Kn6tze1?0 has indicated that the transition freguency
attributablie to the vibrational degree of freedom cof 02 is rnot
above about 40-60 c¢/s in dry pure oxygen nr dry zir, however hs

was unable to fix i1ts position definitely. Measurements of the
ratio of specific heats cof 02 made by Koehler31 at a Trequency

of about 3 ¢/s tend to indicate tanat that frequency is still some-
what above the Lransition; unfortunately, the experimental probable
error 1s too great tc allcw much dependence upon this deduction.
Other measurements have not given significant results for dry air.**
There is no information atout thre tran?ition frequency attributable
to the vibrational degree of freedom of N,. Some of the transition
frequencies for the three vibrational mode; of CO2 have been
located. The deformation mode is most important of these and its

transition frequency (in dry, pure CO2) is about 17 kc/s.32

The charts in FPig. (2) have been computed on the assumption
that the transition frequency for the vibrational degree of
freedom of Né lies at some unknown point, ®X"  above that for 020
Under this assumption, Fig. (2a) is applicable below the transition
frequency for G,, which i5 not higher than 40-60 c/s; Fig. (2b)

- e o - o - e

*The numerical value of the term, "far from," depends on the
desired ascuracy. It can be showvn from the standard equa-
tions for the phase velocity in the transition region (V.O.
Knudsen, J. Acoust. Soc. Am. 6, 199 (1935)], that 88 per cent
of the %otal change in velocity takes place ir a frequency
band of two octaves on either side of the tra: “ition frecuency.

Such a factor of four in frequency is thereforc usually quite
adequate.

**0f course, this transition frequency hec been determined in
noist air and moist oxygen, in which cases it is much_higher.
[See V. O. FEmudsen, J, Acoust. So¢. Am- &, 199 (1935)]). How-
aver, neither the éata on the effect of imperfection of the
gas nor the specific heats apply directly to moist air.

e e e e i e
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is applicable between this point and "X"; FPig. (2¢c) 1=

applica®le hetween "X" ard th2 trarsition frequency of CO,
at 17 ke/s; finally Filg. (2d) is appiicable in the frequegcy
regicn above 17 ke/s. The upper 1liuli of appiicability of
Fig. (2d) is determiied ©y transition frequencies attribut-
able to the rctational degrees of freedom of the component
gases. Where dispersicn of thls type has been detected, the
trarsition frequency iat atmospheric pressure) has teen high
in the megacycle region.33
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